Please Define Three Relevant Continuous Mathematical Fuzzy Membership Functions

Abstract

The idea of a fuzzy set is formally modeled by a membership function that plays the same role as the characteristic function for an ordinary set, except that the membership function takes intermediary values between full membership and no membership. In this short note we first provide some references about the historical emergence of this notion, then discuss the nature of the scale for membership grades, and finally review their elicitation in relation with their intended meaning as a matter of similarity, uncertainty or preference.

Notes

  1. 1.

    We omit references here, for the sake of conciseness; readers can find a lot of them by searching for the corresponding key-words.

References

  1. Aickin, M.: Connecting Dempster-Shafer belief functions with likelihood-based inference. Synthese 123(3), 347–364 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar

  2. Aladenise, N., Bouchon-Meunier, B.: Acquisition de connaissances imparfaites: mise en évidence d'une fonction d'appartenance. Rev. Int. Syst. 11(1), 109–127 (1997)

    Google Scholar

  3. Atanassov, K.: Answer to D. Dubois, S. Gottwald, P., Hajek, J., Kacprzyk, H., Prade's paper "Terminological difficulties in fuzzy set theory—the case of intuitionistic fuzzy sets". Fuzzy Sets Syst. 156, 496–499 (2005)

    Google Scholar

  4. Basu, K., Deb, R., Pattanaik, P.K.: Soft sets: an ordinal formulation of vagueness with some applications to the theory of choice. Fuzzy Sets Syst. 45, 45–58 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar

  5. Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970)

    CrossRef  MathSciNet  MATH  Google Scholar

  6. Bellman, R.E., Kalaba, R., Zadeh, L.A.: Abstraction and pattern classification. J. Math. Anal. Appl. 13, 1–7 (1966)

    CrossRef  MathSciNet  MATH  Google Scholar

  7. Benferhat, S., Dubois, D., Prade, H., Williams, M.-A.: A framework for iterated Belief revision using possibilistic counterparts to Jeffrey's rule. Fundam. Inform. 99(2): 147-168 (2010)

    Google Scholar

  8. Bezdek, J., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models for Pattern Recognition and Image Processing. Kluwer (1999)

    Google Scholar

  9. Black, M.: Vagueness. Phil. Sci. 4, 427–455 (1937). Reprinted in Language and Philosophy: Studies in Method, Cornell University Press, Ithaca and London, pp. 23–58 (1949). Also in Int. J. Gener. Syst. 17, 107–128 (1990)

    Google Scholar

  10. Cattaneo, G., Ciucci, D.: Basic intuitionistic principles in fuzzy set theories and its extensions (A terminological debate on Atanassov IFS). Fuzzy Sets Syst. 157(24), 3198–3219 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar

  11. Chen, J.E., Otto, K.N.: Constructing membership functions using interpolation and measurement theory. Fuzzy Sets Syst. 73, 313–327 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar

  12. Coletti, G., Scozzafava, R.: Coherent conditional probability as a measure of uncertainty of the relevant conditioning events. In: Proceedings of ECSQARU'03, Aalborg, LNAI, vol. 2711, pp. 407–418. Springer-Verlag (2003)

    Google Scholar

  13. Coletti, G., Scozzafava, R.: Conditional probability, fuzzy sets, and possibility: a unifying view. Fuzzy Sets Syst. 144(1), 227–249 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar

  14. Couso, I., Montes, S., Gil., P.: The necessity of the strong \(\alpha \)-cuts of a fuzzy set. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 9(2), 249–262 (2001)

    Google Scholar

  15. Dombi, J.: Basic concepts for a theory of evaluation: the aggregative operator. Eur. J. Oper. Res. 10, 282–293 (1982)

    CrossRef  MathSciNet  MATH  Google Scholar

  16. Dubois, D., Perny, P.: A review of fuzzy sets in decision sciences: achievements, limitations and perspectives. In: Greco S., et al. (eds.) Multiple Criteria Decision Analysis. State of the Art Surveys, pp. 637–691. Springer (2016)

    Google Scholar

  17. Dubois, D., Prade, H., Rannou, E.: An improved method for finding typical values. In: Proceedings 7th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU'98), Paris, July 6–10, Editions EDK, Paris, pp. 1830–1837 (1998)

    Google Scholar

  18. Dubois, D., Prade, H., Sandri, S.: On possibility/probability transformations. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic. State of the Art, pp. 103–112. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar

  19. Dubois, D., Prade, H.: New results about properties and semantics of fuzzy-set-theoretic operators. In: Wang, P.P., Chang, S.K. (eds.) Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems, pp. 59–75. Plenum Publishers (1980)

    Google Scholar

  20. Dubois, D., Prade, H.: Possibility theory: qualitative et quantitative aspects. In: Gabbay, D., Smets, P. (eds.) Quantified Representation of Uncertainty et Imprecision. Handbook of Defeasible Reasoning et Uncertainty Management Systems, vol. 1, pp. 169–226. Kluwer Academic Publishers (1998)

    Google Scholar

  21. Dubois, D., Prade, H.: Qualitative possibility theory and its applications to reasoning and decision under uncertainty. JORBEL (Belg. J. Oper. Res.) 37(1–2), 5–28 (1997)

    Google Scholar

  22. Dubois, D., Prade, H.: Toll sets and toll logic. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic: State of the Art, pp. 169–177. Kluwer Academic Publishers (1993)

    Google Scholar

  23. Dubois, D.: Possibility theory and statistical reasoning. Comput. Stat. Data Anal. 51, 47–69 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar

  24. Dubois, D., Hüllermeier, E.: Comparing probability measures using possibility theory: a notion of relative peakedness. Int. J. Approx. Reason. 45, 364–385 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar

  25. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets Syst. 90, 141–150 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar

  26. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple valued logics: a clarification. Ann. Math. Artif. Intell. 32, 35–66 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar

  27. Dubois, D., Prade, H.: On the use of aggregation operations in information fusion processes. Fuzzy Sets Syst. 142, 143–161 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar

  28. Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. Int. J. Intell. Syst. 23(8), 866–877 (2008)

    CrossRef  MATH  Google Scholar

  29. Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft. Comput. 12, 165–175 (2008)

    CrossRef  MATH  Google Scholar

  30. Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar

  31. Dubois, D., Prade, H., Rossazza, J.P.: Vagueness, typicality and uncertainty in class hierarchies. Int. J. Intell. Syst. 6(2), 167–183 (1991)

    CrossRef  Google Scholar

  32. Dubois, D., Moral, S., Prade, H.: A semantics for possibility theory based on likelihoods. J. Math. Anal. Appl. 205, 359–380 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar

  33. Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Possibility/probability transformations, triangular fuzzy sets, and probabilistic inequalities. Reliab. Comput. 10, 273–297 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar

  34. Dubois, D., Gottwald, S., Hájek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory—the case of "Intuitionistic Fuzzy Set". Fuzzy Sets Syst. 156(3), 485–491 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar

  35. Edwards, W.F.: Likelihood. Cambridge University Press, Cambridge, U.K. (1972)

    MATH  Google Scholar

  36. Finch, P.D.: Characteristics of interest and fuzzy subsets. Inf. Sci. 24, 121–134 (1981)

    CrossRef  MathSciNet  Google Scholar

  37. Förstner, W.: Uncertain neighborhood relations of point sets and fuzzy Delaunay triangulation. In: Förstner, W., Buhmann, J.M., Faber, A., Faber, P. (eds.) Proceedings of the Mustererkennung 1999, 21. DAGM-Symposium, Bonn, 15–17 Sept., Informatik Aktuell, pp. 213–222. Springer (1999)

    Google Scholar

  38. Freund, M.: On the notion of concept I & II. Artif. Intell. 172, 570–590, 2008 & 173, 167–179 (2009)

    Google Scholar

  39. Ganter, B., Wille, R.: Formal Concept Analysis. Springer-Verlag (1999)

    Google Scholar

  40. Giles, R.: The concept of grade of membership. Fuzzy Sets Syst. 25, 297–323 (1988)

    CrossRef  MathSciNet  MATH  Google Scholar

  41. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 8, 145–174 (1967)

    CrossRef  MATH  Google Scholar

  42. Goodman, I.R.: Fuzzy sets as equivalence classes of random sets. In: Yager, R. (ed.) Fuzzy Sets and Possibility Theory: Recent Developments, pp. 327–342. Pergamon Press, Oxford (1981)

    Google Scholar

  43. Grabisch, M.: The Moebius transform on symmetric ordered structures and its application to capacities on finite sets. Discret. Math. 287, 17–34 (2004)

    CrossRef  MATH  Google Scholar

  44. Grattan-Guiness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Logik. Grundladen Math. 22, 149–160 (1975)

    CrossRef  MathSciNet  Google Scholar

  45. Gutiérrez García, J., Rodabaugh, S.E.: Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued "intuitionistic" sets, "intuitionistic" fuzzy sets and topologies. Fuzzy Sets Syst. 156(3), 445–484 (2005)

    Google Scholar

  46. Hisdal, E.: Are grades of membership probabilities? Fuzzy Sets Syst. 25, 325–348 (1988)

    CrossRef  MathSciNet  MATH  Google Scholar

  47. Jahn, K.U.: Intervall-wertige Mengen. Math. Nach. 68, 115–132 (1975)

    CrossRef  MathSciNet  MATH  Google Scholar

  48. Kampé de Fériet, J.: Interpretation of membership functions of fuzzy sets in terms of plausibility and belief. In: Gupta, M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 93–98. North-Holland, Amsterdam (1982)

    Google Scholar

  49. Kaplan, A.: Definition and specification of meanings. J. Phil. 43, 281–288 (1946)

    CrossRef  Google Scholar

  50. Kaplan, A., Schott, H.F.: A calculus for empirical classes. Methods III, 165–188 (1951)

    Google Scholar

  51. Lawry, J.: Modelling and Reasoning with Vague Concepts. Springer (2006)

    Google Scholar

  52. Lee, J.W.T.: Ordinal decomposability and fuzzy connectives. Fuzzy Sets Syst. 136, 237–249 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar

  53. Lee, J.W.T., Yeung, D.S., Tsang, E.C.C.: Ordinal fuzzy sets. IEEE Trans. Fuzzy Syst. 10(6), 767–778 (2002)

    CrossRef  Google Scholar

  54. Lesot, M.-J., Mouillet, L., Bouchon-Meunier, B.: Fuzzy prototypes based on typicality degrees. In: Reusch, B. (ed.) Proceedings of the International Conference on 8th Fuzzy Days, Dortmund, Germany, Sept. 29–Oct. 1, 2004. Advances in Soft Computing, vol. 33, pp. 125–138. Springer (2005)

    Google Scholar

  55. Łukasiewicz, J.: Philosophical, remarks on many-valued systems of propositional logic (1930). In: Borkowski (ed.) Studies in Logic and the Foundations of Mathematics, pp. 153–179. North-Holland (1970) (Reprinted in Selected Works)

    Google Scholar

  56. Maji, P.K., Biswas, R., Roy, A.R.: Soft set theory. Comput. Math. Appl. 45(4–5), 555–562 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar

  57. Marchant, T.: The measurement of membership by comparisons. Fuzzy Sets Syst. 148, 157–177 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar

  58. Marchant, T.: The measurement of membership by subjective ratio estimation. Fuzzy Sets Syst. 148, 179–199 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar

  59. Martin, T.P., Azvine, B.: The X-mu approach: fuzzy quantities, fuzzy arithmetic and fuzzy association rules. In: Proceedings of the IEEE Symposium on Foundations of Computational Intelligence (FOCI), pp. 24–29 (2013)

    Google Scholar

  60. Mauris, G.: Possibility distributions: a unified representation of usual direct-probability-based parameter estimation methods. Int. J. Approx. Reason. 52(9), 1232–1242 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar

  61. Mauris, G., Foulloy, L.: A fuzzy symbolic approach to formalize sensory measurements: an application to a comfort sensor. IEEE Trans. Instrum. Measure. 51(4), 712–715 (2002)

    CrossRef  Google Scholar

  62. Menger, K.: Ensembles flous et fonctions aléatoires. C. R. l'Acad. Sci. Paris 232, 2001–2003 (1951)

    MATH  Google Scholar

  63. Molodtsov, D.: Soft set theory—first results. Comput. Math. Appl. 37(4/5), 19–31 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar

  64. Ruspini, E.H.: A new approach to clustering. Inform. Control 15, 22–32 (1969)

    CrossRef  MATH  Google Scholar

  65. Ruspini, E.H.: On the semantics of fuzzy logic. Int. J. Approx. Reason. 5(1), 45–88 (1991)

    CrossRef  MathSciNet  MATH  Google Scholar

  66. Saaty, T.L.: Measuring the fuzziness of sets. J. Cybern. 4(4), 53–61 (1974)

    CrossRef  MATH  Google Scholar

  67. Sambuc, R.: Fonctions \(\phi \)-floues. Application à l'aide au diagnostic en pathologie thyroidienne. Ph.D. Thesis, Univ. Marseille, France (1975)

    Google Scholar

  68. Sanchez, D., Delgado, M., Villa, M.A., Chamorro-Martinez, J.: On a non-nested level-based representation of fuzziness. Fuzzy Sets Syst. 192, 159–175 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar

  69. Savage, L.J.: The Foundations of Statistics. Wiley (1954)

    Google Scholar

  70. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar

  71. Smets, P.: Possibilistic inference from statistical data. In: Ballester, A. (ed.) Proceedings of the 2nd World Conference on Mathematics at the Service of Man, Las Palmas (Spain) pp. 611–613 (1982)

    Google Scholar

  72. Smets, Ph: Constructing the pignistic probability function in a context of uncertainty. In: Henrion, M., et al. (eds.) Uncertainty in Artificial Intelligence, vol. 5, pp. 29–39. North-Holland, Amsterdam (1990)

    CrossRef  Google Scholar

  73. Smith, E.E., Osherson, D.N.: Conceptual combination with prototype concepts. Cognit. Sci. 8, 357–361 (1984)

    CrossRef  Google Scholar

  74. Sudkamp, T.: Similarity and the measurement of possibility. In: Actes Rencontres Francophones sur la Logique Floue et ses Applications (Montpellier, France), Toulouse: Cepadues Editions, pp. 13–26 (2002)

    Google Scholar

  75. Trillas, E., Alsina, C.: A reflection on what is a membership function. Mathw. Soft Comput. VI(2–3), 201–215 (1999)

    Google Scholar

  76. Türksen, I.B., Bilgic, T.: Measurement of membership functions: theoretical and empirical work. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets, pp. 195–230. Kluwer Publ. Comp. (2000)

    Google Scholar

  77. Vasudev Murthy, S., Kandel, A.: Fuzzy sets and typicality theory. Inform. Sci. 51(1), 61–93 (1990)

    Google Scholar

  78. Wang, G.-J., He, Y.-H.: Intuitionistic fuzzy sets and L-fuzzy sets. Fuzzy Sets Syst. 110, 271–274 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar

  79. Weyl, H.: Mathematics and logic- a brief survey serving as preface to a review of "the Philosophy of Bertrand Russell". Amer. Math. Month. 53, 2–13 (1946)

    MathSciNet  MATH  Google Scholar

  80. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80(1), 111–120 (1996)

    CrossRef  MathSciNet  MATH  Google Scholar

  81. Zadeh, L.A.: Fuzzy sets and systems. In: Fox, J. (ed.) Systems Theory; Proceedings of the Simposium on System Theory, New York, April 20–22, pp. 29–37 (1965). Polytechnic Press, Brooklyn, N.Y. (1966) (reprinted in Int. J. Gener. Syst. 17, 129–138 (1990))

    Google Scholar

  82. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. Part I 8(3), 199–249; Part II 8(4), 301–357; Part III 9(1), 43–80 (1975)

    Google Scholar

  83. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    CrossRef  MATH  Google Scholar

  84. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    CrossRef  MathSciNet  MATH  Google Scholar

  85. Zadeh, L.A.: PRUF—A meaning representation language for natural languages. Int. J. Man-Mach. Stud. 10, 395–460 (1978)

    CrossRef  MathSciNet  MATH  Google Scholar

  86. Zadeh, L.A.: A note on prototype theory and fuzzy sets. Cognition 12(3), 291–297 (1982)

    CrossRef  Google Scholar

Download references

Dedication

The authors are very glad to dedicate this chapter to Bernadette for her continuous and endless efforts to develop and promote the fuzzy set methodology in an open-minded way through her publications, and also for the launching of important international conferences she organized such as IPMU, which have been essential forums for exchanges between various approaches to uncertainty and vagueness, including fuzzy set theory, over more than four decades. Thank you so much, Bernadette.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Didier Dubois .

Editor information

Editors and Affiliations

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Dubois, D., Prade, H. (2021). Membership Functions. In: Lesot, MJ., Marsala, C. (eds) Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications. Studies in Fuzziness and Soft Computing, vol 394. Springer, Cham. https://doi.org/10.1007/978-3-030-54341-9_2

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI : https://doi.org/10.1007/978-3-030-54341-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54340-2

  • Online ISBN: 978-3-030-54341-9

  • eBook Packages: Intelligent Technologies and Robotics Intelligent Technologies and Robotics (R0)

oneilcattat.blogspot.com

Source: https://link.springer.com/chapter/10.1007/978-3-030-54341-9_2

0 Response to "Please Define Three Relevant Continuous Mathematical Fuzzy Membership Functions"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel