Please Define Three Relevant Continuous Mathematical Fuzzy Membership Functions
Abstract
The idea of a fuzzy set is formally modeled by a membership function that plays the same role as the characteristic function for an ordinary set, except that the membership function takes intermediary values between full membership and no membership. In this short note we first provide some references about the historical emergence of this notion, then discuss the nature of the scale for membership grades, and finally review their elicitation in relation with their intended meaning as a matter of similarity, uncertainty or preference.
Notes
- 1.
We omit references here, for the sake of conciseness; readers can find a lot of them by searching for the corresponding key-words.
References
-
Aickin, M.: Connecting Dempster-Shafer belief functions with likelihood-based inference. Synthese 123(3), 347–364 (2000)
-
Aladenise, N., Bouchon-Meunier, B.: Acquisition de connaissances imparfaites: mise en évidence d'une fonction d'appartenance. Rev. Int. Syst. 11(1), 109–127 (1997)
-
Atanassov, K.: Answer to D. Dubois, S. Gottwald, P., Hajek, J., Kacprzyk, H., Prade's paper "Terminological difficulties in fuzzy set theory—the case of intuitionistic fuzzy sets". Fuzzy Sets Syst. 156, 496–499 (2005)
-
Basu, K., Deb, R., Pattanaik, P.K.: Soft sets: an ordinal formulation of vagueness with some applications to the theory of choice. Fuzzy Sets Syst. 45, 45–58 (1992)
-
Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970)
-
Bellman, R.E., Kalaba, R., Zadeh, L.A.: Abstraction and pattern classification. J. Math. Anal. Appl. 13, 1–7 (1966)
-
Benferhat, S., Dubois, D., Prade, H., Williams, M.-A.: A framework for iterated Belief revision using possibilistic counterparts to Jeffrey's rule. Fundam. Inform. 99(2): 147-168 (2010)
-
Bezdek, J., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models for Pattern Recognition and Image Processing. Kluwer (1999)
-
Black, M.: Vagueness. Phil. Sci. 4, 427–455 (1937). Reprinted in Language and Philosophy: Studies in Method, Cornell University Press, Ithaca and London, pp. 23–58 (1949). Also in Int. J. Gener. Syst. 17, 107–128 (1990)
-
Cattaneo, G., Ciucci, D.: Basic intuitionistic principles in fuzzy set theories and its extensions (A terminological debate on Atanassov IFS). Fuzzy Sets Syst. 157(24), 3198–3219 (2006)
-
Chen, J.E., Otto, K.N.: Constructing membership functions using interpolation and measurement theory. Fuzzy Sets Syst. 73, 313–327 (1995)
-
Coletti, G., Scozzafava, R.: Coherent conditional probability as a measure of uncertainty of the relevant conditioning events. In: Proceedings of ECSQARU'03, Aalborg, LNAI, vol. 2711, pp. 407–418. Springer-Verlag (2003)
-
Coletti, G., Scozzafava, R.: Conditional probability, fuzzy sets, and possibility: a unifying view. Fuzzy Sets Syst. 144(1), 227–249 (2004)
-
Couso, I., Montes, S., Gil., P.: The necessity of the strong \(\alpha \)-cuts of a fuzzy set. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 9(2), 249–262 (2001)
-
Dombi, J.: Basic concepts for a theory of evaluation: the aggregative operator. Eur. J. Oper. Res. 10, 282–293 (1982)
-
Dubois, D., Perny, P.: A review of fuzzy sets in decision sciences: achievements, limitations and perspectives. In: Greco S., et al. (eds.) Multiple Criteria Decision Analysis. State of the Art Surveys, pp. 637–691. Springer (2016)
-
Dubois, D., Prade, H., Rannou, E.: An improved method for finding typical values. In: Proceedings 7th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU'98), Paris, July 6–10, Editions EDK, Paris, pp. 1830–1837 (1998)
-
Dubois, D., Prade, H., Sandri, S.: On possibility/probability transformations. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic. State of the Art, pp. 103–112. Kluwer Academic Publishers, Dordrecht (1993)
-
Dubois, D., Prade, H.: New results about properties and semantics of fuzzy-set-theoretic operators. In: Wang, P.P., Chang, S.K. (eds.) Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems, pp. 59–75. Plenum Publishers (1980)
-
Dubois, D., Prade, H.: Possibility theory: qualitative et quantitative aspects. In: Gabbay, D., Smets, P. (eds.) Quantified Representation of Uncertainty et Imprecision. Handbook of Defeasible Reasoning et Uncertainty Management Systems, vol. 1, pp. 169–226. Kluwer Academic Publishers (1998)
-
Dubois, D., Prade, H.: Qualitative possibility theory and its applications to reasoning and decision under uncertainty. JORBEL (Belg. J. Oper. Res.) 37(1–2), 5–28 (1997)
-
Dubois, D., Prade, H.: Toll sets and toll logic. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic: State of the Art, pp. 169–177. Kluwer Academic Publishers (1993)
-
Dubois, D.: Possibility theory and statistical reasoning. Comput. Stat. Data Anal. 51, 47–69 (2006)
-
Dubois, D., Hüllermeier, E.: Comparing probability measures using possibility theory: a notion of relative peakedness. Int. J. Approx. Reason. 45, 364–385 (2007)
-
Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets Syst. 90, 141–150 (1997)
-
Dubois, D., Prade, H.: Possibility theory, probability theory and multiple valued logics: a clarification. Ann. Math. Artif. Intell. 32, 35–66 (2001)
-
Dubois, D., Prade, H.: On the use of aggregation operations in information fusion processes. Fuzzy Sets Syst. 142, 143–161 (2004)
-
Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. Int. J. Intell. Syst. 23(8), 866–877 (2008)
-
Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft. Comput. 12, 165–175 (2008)
-
Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012)
-
Dubois, D., Prade, H., Rossazza, J.P.: Vagueness, typicality and uncertainty in class hierarchies. Int. J. Intell. Syst. 6(2), 167–183 (1991)
-
Dubois, D., Moral, S., Prade, H.: A semantics for possibility theory based on likelihoods. J. Math. Anal. Appl. 205, 359–380 (1997)
-
Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Possibility/probability transformations, triangular fuzzy sets, and probabilistic inequalities. Reliab. Comput. 10, 273–297 (2004)
-
Dubois, D., Gottwald, S., Hájek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory—the case of "Intuitionistic Fuzzy Set". Fuzzy Sets Syst. 156(3), 485–491 (2005)
-
Edwards, W.F.: Likelihood. Cambridge University Press, Cambridge, U.K. (1972)
-
Finch, P.D.: Characteristics of interest and fuzzy subsets. Inf. Sci. 24, 121–134 (1981)
-
Förstner, W.: Uncertain neighborhood relations of point sets and fuzzy Delaunay triangulation. In: Förstner, W., Buhmann, J.M., Faber, A., Faber, P. (eds.) Proceedings of the Mustererkennung 1999, 21. DAGM-Symposium, Bonn, 15–17 Sept., Informatik Aktuell, pp. 213–222. Springer (1999)
-
Freund, M.: On the notion of concept I & II. Artif. Intell. 172, 570–590, 2008 & 173, 167–179 (2009)
-
Ganter, B., Wille, R.: Formal Concept Analysis. Springer-Verlag (1999)
-
Giles, R.: The concept of grade of membership. Fuzzy Sets Syst. 25, 297–323 (1988)
-
Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 8, 145–174 (1967)
-
Goodman, I.R.: Fuzzy sets as equivalence classes of random sets. In: Yager, R. (ed.) Fuzzy Sets and Possibility Theory: Recent Developments, pp. 327–342. Pergamon Press, Oxford (1981)
-
Grabisch, M.: The Moebius transform on symmetric ordered structures and its application to capacities on finite sets. Discret. Math. 287, 17–34 (2004)
-
Grattan-Guiness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Logik. Grundladen Math. 22, 149–160 (1975)
-
Gutiérrez García, J., Rodabaugh, S.E.: Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued "intuitionistic" sets, "intuitionistic" fuzzy sets and topologies. Fuzzy Sets Syst. 156(3), 445–484 (2005)
-
Hisdal, E.: Are grades of membership probabilities? Fuzzy Sets Syst. 25, 325–348 (1988)
-
Jahn, K.U.: Intervall-wertige Mengen. Math. Nach. 68, 115–132 (1975)
-
Kampé de Fériet, J.: Interpretation of membership functions of fuzzy sets in terms of plausibility and belief. In: Gupta, M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 93–98. North-Holland, Amsterdam (1982)
-
Kaplan, A.: Definition and specification of meanings. J. Phil. 43, 281–288 (1946)
-
Kaplan, A., Schott, H.F.: A calculus for empirical classes. Methods III, 165–188 (1951)
-
Lawry, J.: Modelling and Reasoning with Vague Concepts. Springer (2006)
-
Lee, J.W.T.: Ordinal decomposability and fuzzy connectives. Fuzzy Sets Syst. 136, 237–249 (2003)
-
Lee, J.W.T., Yeung, D.S., Tsang, E.C.C.: Ordinal fuzzy sets. IEEE Trans. Fuzzy Syst. 10(6), 767–778 (2002)
-
Lesot, M.-J., Mouillet, L., Bouchon-Meunier, B.: Fuzzy prototypes based on typicality degrees. In: Reusch, B. (ed.) Proceedings of the International Conference on 8th Fuzzy Days, Dortmund, Germany, Sept. 29–Oct. 1, 2004. Advances in Soft Computing, vol. 33, pp. 125–138. Springer (2005)
-
Łukasiewicz, J.: Philosophical, remarks on many-valued systems of propositional logic (1930). In: Borkowski (ed.) Studies in Logic and the Foundations of Mathematics, pp. 153–179. North-Holland (1970) (Reprinted in Selected Works)
-
Maji, P.K., Biswas, R., Roy, A.R.: Soft set theory. Comput. Math. Appl. 45(4–5), 555–562 (2003)
-
Marchant, T.: The measurement of membership by comparisons. Fuzzy Sets Syst. 148, 157–177 (2004)
-
Marchant, T.: The measurement of membership by subjective ratio estimation. Fuzzy Sets Syst. 148, 179–199 (2004)
-
Martin, T.P., Azvine, B.: The X-mu approach: fuzzy quantities, fuzzy arithmetic and fuzzy association rules. In: Proceedings of the IEEE Symposium on Foundations of Computational Intelligence (FOCI), pp. 24–29 (2013)
-
Mauris, G.: Possibility distributions: a unified representation of usual direct-probability-based parameter estimation methods. Int. J. Approx. Reason. 52(9), 1232–1242 (2011)
-
Mauris, G., Foulloy, L.: A fuzzy symbolic approach to formalize sensory measurements: an application to a comfort sensor. IEEE Trans. Instrum. Measure. 51(4), 712–715 (2002)
-
Menger, K.: Ensembles flous et fonctions aléatoires. C. R. l'Acad. Sci. Paris 232, 2001–2003 (1951)
-
Molodtsov, D.: Soft set theory—first results. Comput. Math. Appl. 37(4/5), 19–31 (1999)
-
Ruspini, E.H.: A new approach to clustering. Inform. Control 15, 22–32 (1969)
-
Ruspini, E.H.: On the semantics of fuzzy logic. Int. J. Approx. Reason. 5(1), 45–88 (1991)
-
Saaty, T.L.: Measuring the fuzziness of sets. J. Cybern. 4(4), 53–61 (1974)
-
Sambuc, R.: Fonctions \(\phi \)-floues. Application à l'aide au diagnostic en pathologie thyroidienne. Ph.D. Thesis, Univ. Marseille, France (1975)
-
Sanchez, D., Delgado, M., Villa, M.A., Chamorro-Martinez, J.: On a non-nested level-based representation of fuzziness. Fuzzy Sets Syst. 192, 159–175 (2012)
-
Savage, L.J.: The Foundations of Statistics. Wiley (1954)
-
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
-
Smets, P.: Possibilistic inference from statistical data. In: Ballester, A. (ed.) Proceedings of the 2nd World Conference on Mathematics at the Service of Man, Las Palmas (Spain) pp. 611–613 (1982)
-
Smets, Ph: Constructing the pignistic probability function in a context of uncertainty. In: Henrion, M., et al. (eds.) Uncertainty in Artificial Intelligence, vol. 5, pp. 29–39. North-Holland, Amsterdam (1990)
-
Smith, E.E., Osherson, D.N.: Conceptual combination with prototype concepts. Cognit. Sci. 8, 357–361 (1984)
-
Sudkamp, T.: Similarity and the measurement of possibility. In: Actes Rencontres Francophones sur la Logique Floue et ses Applications (Montpellier, France), Toulouse: Cepadues Editions, pp. 13–26 (2002)
-
Trillas, E., Alsina, C.: A reflection on what is a membership function. Mathw. Soft Comput. VI(2–3), 201–215 (1999)
-
Türksen, I.B., Bilgic, T.: Measurement of membership functions: theoretical and empirical work. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets, pp. 195–230. Kluwer Publ. Comp. (2000)
-
Vasudev Murthy, S., Kandel, A.: Fuzzy sets and typicality theory. Inform. Sci. 51(1), 61–93 (1990)
-
Wang, G.-J., He, Y.-H.: Intuitionistic fuzzy sets and L-fuzzy sets. Fuzzy Sets Syst. 110, 271–274 (2000)
-
Weyl, H.: Mathematics and logic- a brief survey serving as preface to a review of "the Philosophy of Bertrand Russell". Amer. Math. Month. 53, 2–13 (1946)
-
Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80(1), 111–120 (1996)
-
Zadeh, L.A.: Fuzzy sets and systems. In: Fox, J. (ed.) Systems Theory; Proceedings of the Simposium on System Theory, New York, April 20–22, pp. 29–37 (1965). Polytechnic Press, Brooklyn, N.Y. (1966) (reprinted in Int. J. Gener. Syst. 17, 129–138 (1990))
-
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. Part I 8(3), 199–249; Part II 8(4), 301–357; Part III 9(1), 43–80 (1975)
-
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
-
Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)
-
Zadeh, L.A.: PRUF—A meaning representation language for natural languages. Int. J. Man-Mach. Stud. 10, 395–460 (1978)
-
Zadeh, L.A.: A note on prototype theory and fuzzy sets. Cognition 12(3), 291–297 (1982)
Dedication
The authors are very glad to dedicate this chapter to Bernadette for her continuous and endless efforts to develop and promote the fuzzy set methodology in an open-minded way through her publications, and also for the launching of important international conferences she organized such as IPMU, which have been essential forums for exchanges between various approaches to uncertainty and vagueness, including fuzzy set theory, over more than four decades. Thank you so much, Bernadette.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Dubois, D., Prade, H. (2021). Membership Functions. In: Lesot, MJ., Marsala, C. (eds) Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications. Studies in Fuzziness and Soft Computing, vol 394. Springer, Cham. https://doi.org/10.1007/978-3-030-54341-9_2
Download citation
- .RIS
- .ENW
- .BIB
-
DOI : https://doi.org/10.1007/978-3-030-54341-9_2
-
Published:
-
Publisher Name: Springer, Cham
-
Print ISBN: 978-3-030-54340-2
-
Online ISBN: 978-3-030-54341-9
-
eBook Packages: Intelligent Technologies and Robotics Intelligent Technologies and Robotics (R0)
Source: https://link.springer.com/chapter/10.1007/978-3-030-54341-9_2
0 Response to "Please Define Three Relevant Continuous Mathematical Fuzzy Membership Functions"
Post a Comment